

ABDUL LADHA SCIENCE STUDENT CENTRE

ARCHITECT | Johnston Davidson Architecture **STRUCTURAL ENGINEER** | CY Loh Associates **CONSTRUCTION MANAGER** | Bird Construction **ADDRESS** | 2055 East Mall, Vancouver BC

few independent student society buildings on campus, the first of its kind to provide socializing and studying space for students within the Faculty of Science. The design features locally sourced mass timber elements in the primary supporting walls and roof, as well as glue laminated timber (GLT) columns and beams that uphold the structure. The use of wood was intended to bring a sense of strength, stability, and warmth to the structure, and was chosen for its local availability and sustainable attributes. Additionally, the exterior wall finish is clad with cedar siding.

GLT

Columns and beams

WOOD PANEL

Cedar siding

CONCRETE

Foundation and ground floor

GROSS FLOOR AREA

812 m²

HEIGHT

9 m | 3 storey

PROGRAM

Academic

FUNCTIONS

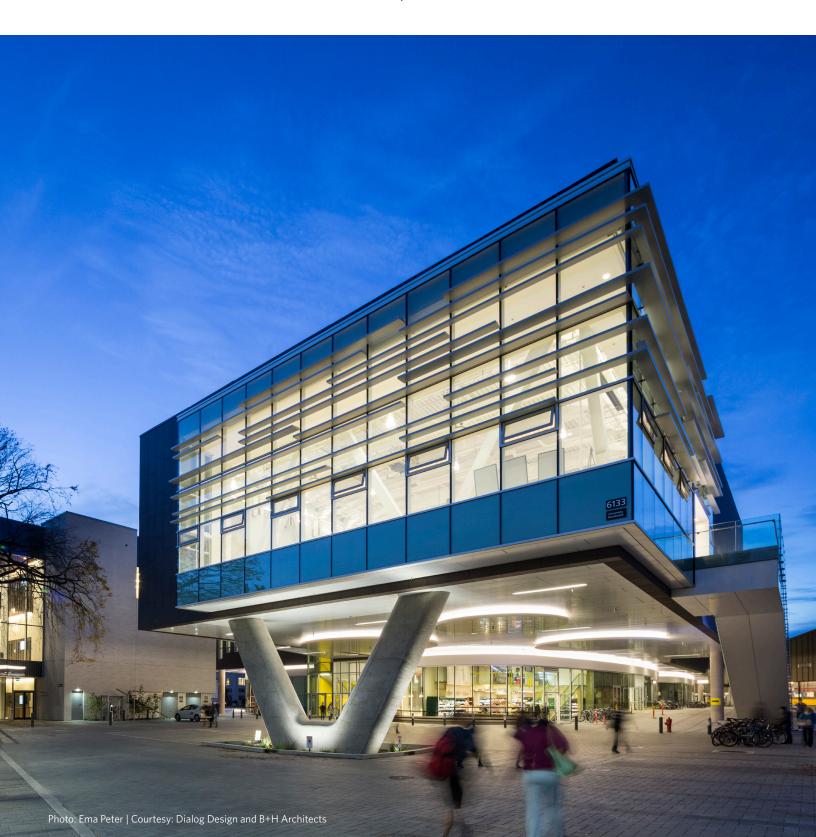
Study lounges and meeting rooms

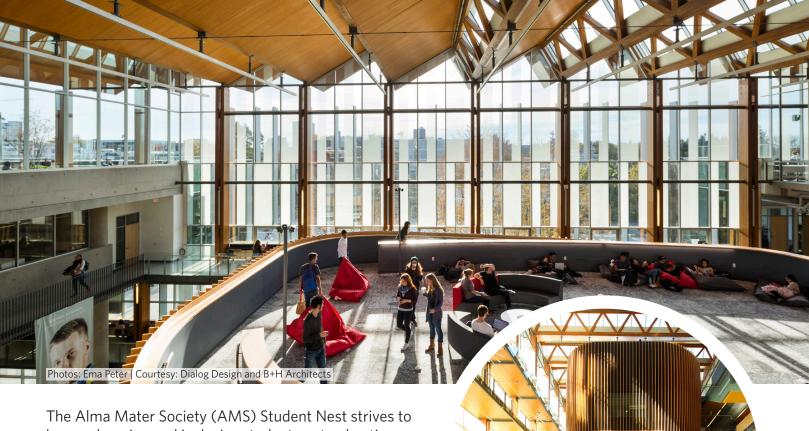
MEP CONSULTANT

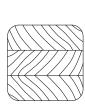
Stantec

CONSTRUCTION

2005 - 2006


PROJECT COST


CDN\$3,2M (2006)


ALMA MATER SOCIETY STUDENT NEST

ARCHITECT | Dialog Design and B+H Architects **STRUCTURAL ENGINEER** | RJC Engineers **CONSTRUCTION MANAGER** | Bird Construction **ADDRESS** | 6138 Student Union Blvd, Vancouver BC

The Alma Mater Society (AMS) Student Nest strives to be a welcoming and inclusive student centre, hosting a wide range of functions including retail and food services, student club rooms, and meeting spaces. The building's structure is mainly concrete while strategically employing mass timber structural elements to enhance the design. The East atrium stands out for its four-story-high, curved glue laminated timber (GLT) columns. The West atrium's saw tooth roof is constructed with cross laminated timber panels (CLT), supported by GLT trusses. The Nest fully embraces sustainability in both its functions and built-form.

GLT

Columns in East and main atriums, and roof supports

CLT

Sawtooth roof and sky-bridges floor

CONCRETE

Foundation and main structure

GROSS FLOOR AREA

23,699 m²

HEIGHT

12 m | 5 storeys

PROGRAM

Community

FUNCTIONS

Social spaces, food services, retail, meeting and study rooms, climbing wall

CERTIFICATION

LEED Platinum (2017)

MEP CONSULTANT

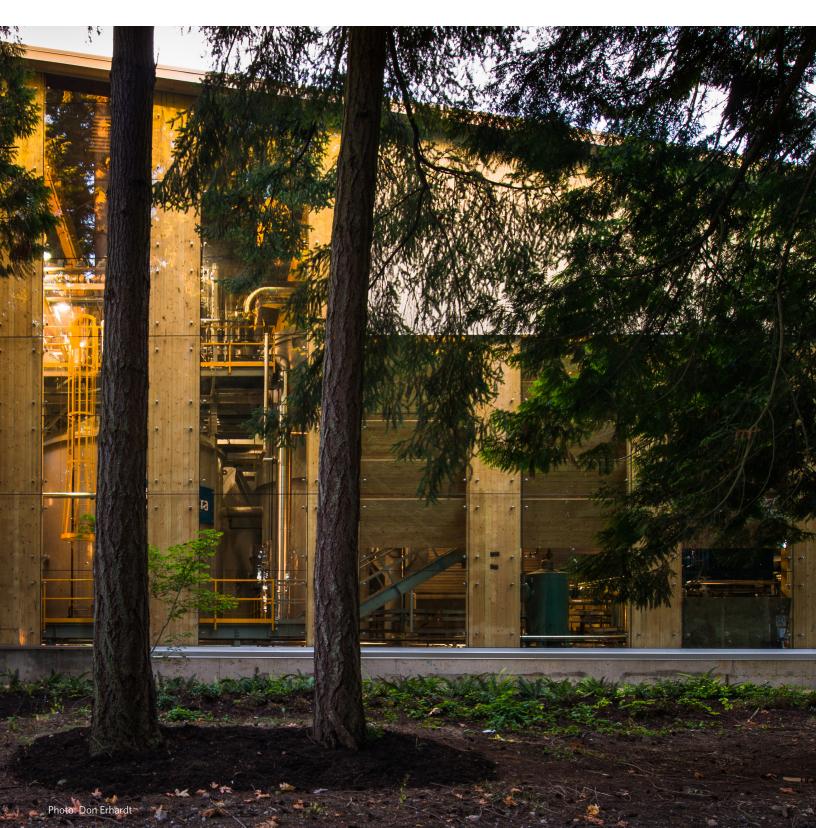
AME Group

SUSTAINABILITY CONSULTANT

Halsall Associates and Dialog Design

CONSTRUCTION

2012-2015


PROJECT COST

CDN\$109,6M (2015)

BIOENERGY RESEARCH AND DEMONSTRATION FACILITY

ARCHITECT | McFarland Marceau Architects **STRUCTURAL ENGINEER** | RJC Engineers **CONSTRUCTION MANAGER** | Ledcor Group **ADDRESS** | 2335 Lower Mall, Vancouver BC

The Bioenergy Research and Demonstration Facility (BRDF) is an energy generation facility that processes wood waste biomass to generate thermal energy for the UBC campus. The building features an exposed mass timber structure, with Douglas-Fir glue laminated timber (GLT) columns and beams attached through steel connectors, and Spruce-Pine-Fir cross-laminated timber (CLT) panels for the floor, walls, and roof. The CLT panels were fabricated locally, mostly from 90% pine beetle-affected lumber. The BRDF is one of North America's first industrial buildings to be constructed with CTL panel technology.

GLT

Columns and beams

CLT

Exterior walls, floors, and roof

CONCRETE

Foundation and cogeneration engine room

GROSS FLOOR AREA

1,971 m²

HEIGHT

17.3 m | 4 storeys

PROGRAM

Utility

FUNCTIONS

Power plant, laboratory, offices

CERTIFICATION

LEED Gold (2014)

MEP CONSULTANT

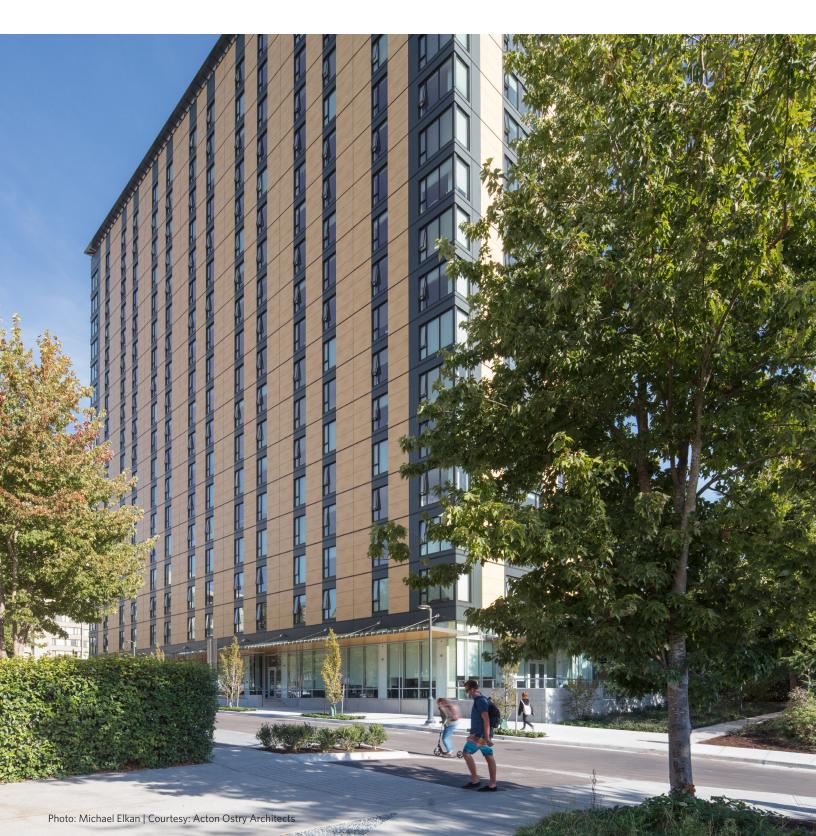
Stantec

SUSTAINABILITY CONSULTANT

McFarland Marceau Architects

CONSTRUCTION

2010-2012


PROJECT COST

CDN\$27,4M (2012)

BROCK COMMONS TALLWOOD HOUSE

ARCHITECT | Acton Ostry Architects
STRUCTURAL ENGINEER | Fast + Epp
CONSTRUCTION MANAGER | Urban One Builders
ADDRESS | 6088 Walter Gage Road, Vancouver BC

The Brock Commons Tallwood House is an 18-storey mass timber hybrid high-rise, the first of its kind in Canada. Apart from having concrete foundation, ground floor, and elevator cores, the building is predominantly formed by a mass timber structure. It features prefabricated cross-laminated timber (CLT) floor panels, supported mostly on glue laminated timber (GLT) columns and some parallel strand lumber (PSL) columns. Tallwood House provides accommodation for more than 400 students. The building used more than 2,300 m³ of wood and is one of the tallest hybrid mass timber structures to date.

GLT

Columns

PSL

Columns

CLT

Floors

CEDAR PANELS

Exterior cladding

GROSS FLOOR AREA

15,120 m² | 162,750 ft²

HEIGHT

54 m | 18 storeys

PROGRAM

Student residence

FUNCTIONS

Student residences, social and study spaces, meeting room

CERTIFICATION

LEED Gold (target)

MEP CONSULTANT

Stantec

SUSTAINABILITY CONSULTANT

Stantec

CONSTRUCTION

2015-2017

PROJECT COST

CDN\$51,5M (2017)

C.K. CHOI BUILDING for the Institute of Asian Research

ARCHITECT | Matsuzaki Wright Architects
STRUCTURAL ENGINEER |
Read Jones Christoffersen Consulting Engineers
CONSTRUCTION MANAGER | Country West Construction
ADDRESS | 1855 West Mall, Vancouver BC

to reach new benchmarks in sustainability, and is therefore considered the first green building on the UBC Vancouver Campus. The building features innovative Douglas-fir heavy timber structure, as well as glue laminated timber (GLT) columns and beams mainly as the support of the curved atrium roofs. The project team made use of reused construction materials such as timber salvaged from the neighboring deconstructed Armories Building.

GLT

Atrium roof

2,912 m²

HEIGHT

15.7 m | 3 storeys 1996

HEAVY TIMBER Columns and beams

PROGRAM Academic

RECYCLED BRICK

Exterior cladding

FUNCTIONS

Offices, classroom, library

CONSTRUCTION

MEP CONSULTANTS

Mechanical: Keen Engineering Electrical: Freudlich & Associates

PROJECT COST

CDN\$6.25M (1996)

CONCRETE

CAMPUS ENERGY CENTRE

ARCHITECT | Dialog Design
STRUCTURAL ENGINEER | Fast + Epp
CONSTRUCTION MANAGER | Ledcor Group
ADDRESS | 6130 Agronomy Road, Vancouver BC

The Campus Energy Centre (CEC) is a state-of-the-art hot water boiler facility and the primary energy source for the academic campus district energy system. The primary structure consists of locally sourced cross-laminated timber (CLT) panels supported by glue laminated timber (GLT) columns and beams that span twenty metres across the facility. Zinc metal shrouds are used as the building envelope, meeting ventilation and light transparency requirements. The CEC building and facility support UBC in achieving their goal of reducing green house gas emissions.

GLT

Columns and beams

CLT

Exterior walls and roof

METAL SHROUD

Exterior cladding

CONCRETE

Foundation

GROSS FLOOR AREA

1,858 m² | 19,992 ft²

HEIGHT

17 m | 2 storeys

PROGRAM

Utility

FUNCTIONS

Power plant

CERTIFICATION

LEED Gold (2017)

MEP CONSULTANTS

Mechanical: FVB Energy

Electrical: Applied Engineering

Solutions

SUSTAINABILITY CONSULTANT

Recollective Consulting

CONSTRUCTION

2013-2015

PROJECT COST


CDN\$24M (2015)

CENTRE FOR ADVANCED WOOD PROCESSING

ARCHITECT | Dalla-Lana Griffin Dowling Knapp Architects **STRUCTURAL ENGINEER** | CWMM Consulting Engineers **CONSTRUCTION MANAGER** | Swagger Construction **ADDRESS** | 2424 Main Mall, Vancouver BC

and technical assistance for the wood products manufacturing industry. The building was designed to feature the latest innovations in engineered wood products and techniques. In combination with a concrete foundation and basement, the structure is upheld by glue laminated timber (GLT) columns and beams. Additionally, heavy timber trusses are used to support the roof of its machine laboratory. CAWP is situated within the Forest Sciences complex, home to the UBC Faculty of Forestry.

GLT

Columns and beams

HEAVY TIMBER

Roof trusses

CONCRETE

Foundation, basement, machine lab, and core

GROSS FLOOR AREA

3,730 m²

HEIGHT

10.1 m | 3 storeys

PROGRAM

Academic

FUNCTIONS

Laboratories and classrooms

MEP CONSULTANT

Mechanical: DW Thompson

Consultants

Electrical: Freundlich &

Associates

CONSTRUCTION

1998

PROJECT COST

CDN\$50,2M (1998)

CENTRE FOR INTERACTIVE RESEARCH ON SUSTAINABILITY

ARCHITECT | Perkins and Will Architects **STRUCTURAL ENGINEER** | Fast + Epp **CONSTRUCTION MANAGER** | Heatherbrae Construction **ADDRESS** | 2260 West Mall, Vancouver BC

and glue laminated timber (GLT) beams that support the auditorium roof. Nailed-laminated timber (NLT), sourced regionally from pine-beetle infested forests are used as floor decking. Additionally, the exterior cladding is stained Western cedar panels.

GLT

Columns and beam

NLT

Floors and roof

CEDAR PANELS

Exterior cladding

CONCRETE

Foundation, basement, and ground floor

GROSS FLOOR AREA

5,675 m²

HEIGHT

22 m | 5 storeys

PROGRAM

Academic

FUNCTIONS

Lecture halls, office space, meeting rooms, labs

CERTIFICATION

LEED Platinum (2013)

MEP CONSULTANT

Stantec

SUSTAINABILITY CONSULTANT

Perkins and Will Architects

CONSTRUCTION

2009 - 2011

PROJECT COST

CDN\$36.8M (2011)